Fit FAST model for single-section SRT data.
FAST_single(
seu,
Adj_sp,
q = 15,
fit.model = c("poisson", "gaussian"),
slot = "data",
assay = NULL,
reduction.name = "fast",
verbose = TRUE,
...
)
a Seurat object.
a sparse matrix, specify the adjacency matrix among spots.
an optional integer, specify the number of low-dimensional embeddings to extract in FAST. Larger q means more information extracted.
an optional string, specify the version of FAST to be fitted. The Gaussian version models the log-count matrices while the Poisson verions models the count matrices; default as possion model.
an optional string, specify the slot in Seurat object as the input of FAST model, default as `data`.
an optional string, specify the assay in Seurat object, default as `NULL` that means the default assay in Seurat object.
an optional string, specify the reduction name for the fast embedding, default as `fast`.
a logical value, whether output the information in iteration.
other arguments passed to FAST_run
.
return a list including the parameters set in the arguments.